Finally, to prove the row expansion, write $B=A^{T}$. Then $B_{i j}=\left(A_{i j}^{T}\right)$ and $b_{i j}=a_{j i}$ for all i and j. Expanding det B along column j gives

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det} A^{T}=\operatorname{det} B=\sum_{i=1}^{n} b_{i j}(-1)^{i+j} \operatorname{det} B_{i j} \\
& =\sum_{i=1}^{n} a_{j i}(-1)^{j+i} \operatorname{det}\left[\left(A_{j i}^{T}\right)\right]=\sum_{i=1}^{n} a_{j i}(-1)^{j+i} \operatorname{det} A_{j i}
\end{aligned}
$$

This is the required expansion of $\operatorname{det} A$ along row j.

Exercises for 3.6

Exercise 3.6.1 Prove Lemma 3.6.1 for columns.
Exercise 3.6.2 Verify that interchanging rows p and q $(q>p)$ can be accomplished using $2(q-p)-1$ adjacent interchanges.

Exercise 3.6.3 If u is a number and A is an $n \times n$ matrix, prove that $\operatorname{det}(u A)=u^{n} \operatorname{det} A$ by induction on n, using only the definition of $\operatorname{det} A$.

Supplementary Exercises for Chapter 3

Exercise 3.1 Show that
$\operatorname{det}\left[\begin{array}{ccc}a+p x & b+q x & c+r x \\ p+u x & q+v x & r+w x \\ u+a x & v+b x & w+c x\end{array}\right]=\left(1+x^{3}\right) \operatorname{det}\left[\begin{array}{lll}a & b & c \\ p & q & r \\ u & v & w\end{array}\right]$

Exercise 3.2

a. Show that $\left(A_{i j}\right)^{T}=\left(A^{T}\right)_{j i}$ for all i, j, and all square matrices A.
b. Use (a) to prove that $\operatorname{det} A^{T}=\operatorname{det} A$. [Hint: Induction on n where A is $n \times n$.]

Exercise 3.3 Show that det $\left[\begin{array}{cc}0 & I_{n} \\ I_{m} & 0\end{array}\right]=(-1)^{n m}$ for all $n \geq 1$ and $m \geq 1$.
Exercise 3.4 Show that

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right]=(b-a)(c-a)(c-b)(a+b+c)
$$

Exercise 3.5 Let $A=\left[\begin{array}{l}R_{1} \\ R_{2}\end{array}\right]$ be a 2×2 matrix with rows R_{1} and R_{2}. If $\operatorname{det} A=5$, find $\operatorname{det} B$ where

$$
B=\left[\begin{array}{l}
3 R_{1}+2 R_{3} \\
2 R_{1}+5 R_{2}
\end{array}\right]
$$

Exercise 3.6 Let $A=\left[\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right]$ and let $\mathbf{v}_{k}=A^{k} \mathbf{v}_{0}$ for each $k \geq 0$.
a. Show that A has no dominant eigenvalue.
b. Find \mathbf{v}_{k} if \mathbf{v}_{0} equals:
i. $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
ii. $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
iii. $\left[\begin{array}{l}x \\ y\end{array}\right] \neq\left[\begin{array}{l}1 \\ 1\end{array}\right]$ or $\left[\begin{array}{l}2 \\ 1\end{array}\right]$

