Finally, to prove the row expansion, write $B = A^T$. Then $B_{ij} = (A_{ij}^T)$ and $b_{ij} = a_{ji}$ for all *i* and *j*. Expanding det *B* along column *j* gives

$$\det A = \det A^{T} = \det B = \sum_{i=1}^{n} b_{ij} (-1)^{i+j} \det B_{ij}$$
$$= \sum_{i=1}^{n} a_{ji} (-1)^{j+i} \det \left[(A_{ji}^{T}) \right] = \sum_{i=1}^{n} a_{ji} (-1)^{j+i} \det A_{ji}$$

This is the required expansion of $\det A$ along row j.

Exercises for 3.6

Exercise 3.6.1 Prove Lemma 3.6.1 for columns.

Exercise 3.6.2 Verify that interchanging rows p and q (q > p) can be accomplished using 2(q-p)-1 adjacent interchanges.

Exercise 3.6.3 If *u* is a number and *A* is an $n \times n$ matrix, prove that det $(uA) = u^n$ det *A* by induction on *n*, using only the definition of det *A*.

Supplementary Exercises for Chapter 3

Exercise 3.1		Show that b+qx c+rx q+vx r+wx $v+bx w+cx$ $= (1+x^3) \det \begin{bmatrix} a & b & c \\ p & q & r \\ u & v & w \end{bmatrix}$					
	a + px	b + qx	c + rx		a	b	с
det	p+ux	q + vx	r + wx	$=(1+x^3)$ det	p	q	r
	u + ax	v + bx	w + cx]	L u	v	w

Exercise 3.2

- a. Show that $(A_{ij})^T = (A^T)_{ji}$ for all *i*, *j*, and all square matrices *A*.
- b. Use (a) to prove that det $A^T = \det A$. [*Hint*: Induction on *n* where *A* is $n \times n$.]

Exercise 3.3 Show that det $\begin{bmatrix} 0 & I_n \\ I_m & 0 \end{bmatrix} = (-1)^{nm}$ for all $n \ge 1$ and $m \ge 1$.

Exercise 3.4 Show that

det
$$\begin{bmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{bmatrix} = (b-a)(c-a)(c-b)(a+b+c)$$

Exercise 3.5 Let $A = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$ be a 2 × 2 matrix with rows R_1 and R_2 . If det A = 5, find det B where

$$B = \left[\begin{array}{c} 3R_1 + 2R_3 \\ 2R_1 + 5R_2 \end{array} \right]$$

Exercise 3.6 Let $A = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix}$ and let $\mathbf{v}_k = A^k \mathbf{v}_0$ for each $k \ge 0$.

- a. Show that A has no dominant eigenvalue.
- b. Find \mathbf{v}_k if \mathbf{v}_0 equals:

i.
$$\begin{bmatrix} 1\\1 \end{bmatrix}$$

ii. $\begin{bmatrix} 2\\1 \end{bmatrix}$
iii. $\begin{bmatrix} x\\y \end{bmatrix} \neq \begin{bmatrix} 1\\1 \end{bmatrix}$ or $\begin{bmatrix} 2\\1 \end{bmatrix}$